
PaBdataODI-8.5 Deliverable: D8.5

Page 1 of 17

PaNdata ODI

Deliverable D8.4

Draft: D8.4 Examination of Distributed parallel file
systems (Month 21)

Grant Agreement Number RI-283556

Project Title PaN-data Open Data Infrastructure

Title of Deliverable D8.4: Examination of Distributed parallel file system (Month 21) - Report

Deliverable Number D8.4

Lead Beneficiary STFC

Deliverable
Dissemination Level

Public

Deliverable Nature Report

Contractual Delivery Date 01 Jul 2013 (Month 21)

Actual Delivery Date 17 November 2013

The PaN-data ODI project is partly funded by the European Commission under the 7th Framework
Programme, Information Society Technologies, Research Infrastructures.

PaBdataODI-8.5 Deliverable: D8.5

Page 2 of 17

Abstract

Implementation of pNexus and MPI I/O on parallel file systems (Month 21)
Keyword list

PaN-data ODI, Scalability

Document approval

Approved for submission to EC by all partners on 07.10..2013

Revision history

Issue Author(s) Date Description

01.0 Bill Pulford 31 Aug 2013 Complete version for discussion

01.1 Diamond co-workers 02 Sep 2013

01.2 Frank Schluenzen - DESY 17 Sep 2013 Comment and suggestions

01.3 Bill Pulford 7 October 2013 Reformat and update

02 Juan Bicarregui 20 November 2013 Changes to deliverable numbering and title to make consistent with DoW

Acknowledgements:
Jon Thompson (DLS), Ulrik Pedersen (DLS), Mark Basham (DLS), Frederik Ferner (DLS), Nick
Rees (DLS), Heiner Billich (PSI/SLS), Frank Schluenzen (DESY)

PaBdataODI-8.5 Deliverable: D8.5

Page 3 of 17

Table of contents

Page

1. Introduction .. 3

1.1. Meetings and workshops .. 4

1.2. Scope of the report ... 4

2. The challenges provided by current detectors ... 5

2.1. Examples of detectors at DLS .. 5

2.2. Highly parallel detectors and file systems Lustre and GPFS 6

2.3. Lustre and GPFS test performance comparison, a DLS example 7

2.3.1. Benchmark criteria .. 7

2.3.2. Lustre Test .. 7

2.3.3. GPFS Test ... 8

3. Excalibur Overview .. 8

3.1. Comparison Lustre and GPFS to support Excalibur .. 9

3.1.1. Write test to the Lustre and GPFS under similar conditions 10

3.1.2. 104Hz, 100000 frames to Lustre .. 10

3.1.3. 104Hz, 10000 frames to GPFS ... 11

3.1.4. Final observations from the Excalibur example ... 12

4. Practical details of Hierarchical Data Format implementation 14

4.1.1. Notes: .. 14

4.1.2. An illustration of Tomography an Imaging use of the above infrastructure 15

5. Conclusions ... 15

5.1. Software available: ... 16

Appendix A – Effects of file indexing .. 17

1. Introduction

The PANData ODI project sets out to optimize coordination between research groups working at

one or more different large experimental facilities across Europe and with the potential of expanding

its scope across the scientific world. There are a number of components to the project such as

common authentication, application software and federated searchable data storage systems. This

report relates to a joint research activity, Work Package 8 Scalability, which concerns

standardization of file formats and research to identify supporting data storage architectures to

optimize speeds and data storage capacity.

PaBdataODI-8.5 Deliverable: D8.5

Page 4 of 17

The timeline for this workpackage:

 D8.1: Definition of pHDF5 capable Nexus implementation – Software – Report Delivered Aug
2012

 D8.2: Evaluation of Parallel file systems and MPI I/O implementations - Report Delivered Aug
2012

 D8.3: Implementation of pNexus and MPI I/O on parallel file systems – Report Delivered Oct.
2013

o (Note that in the WP description there is no D8.4, so deliverables 8.4,8.5,8.6 are
numbered 8.5,8.6,8.7 in the WP description.)

 D8.4 Examination of Distributed parallel file system

 D8.5: Demonstrate capabilities on selected applications (Month 21 June 2013) – This report

o A demonstration application is distributed and is in daily use by many users and at a
number of European facilities see DAWNScience.

 D8.6: Evaluation of coupling of prototype to multi-core architectures (Month 27 Dec 2014) -
Report - Work continuing in the community.

1.1. Meetings and workshops

 NOBUGS Meetings and NOBUGS Workshop – Diamond Light Source, 24-28 September 2012

 Eiger Detector Workshop – SLS, 23-25 January 2013

 Workshop – DESY, 4-6 March 2013

 PANData – LUND, 12-14 March 2013

1.2. Scope of the report

The following topics are covered in this report.

1. A case study of the commissioning of an advanced parallel detector

2. Highly parallel detector and file systems Lustre and GPFS

3. Practical Details of Hierarchical Data Format Implementation

4. Implementation details of the file systems architecture to support fast parallel writing of HDF

files.

PaBdataODI-8.5 Deliverable: D8.5

Page 5 of 17

2. The challenges provided by current detectors

The processes of Data Acquisition and Analysis at large facilities, particularly synchrotrons, often

involves the reading and writing of many extremely large data files potentially occupying up to

petabytes of storage space. Depending on the experimental technique detectors may be used that

can provide high data rates in terms of both numbers of files and file sizes.

2.1. Examples of detectors at DLS

Specification PCO 40001 PCO-Edge Pilatus 6M2 Excalibur3 Percival4

Frame 2D 2D 2D 2 - 3D 2D

Scan Size 1D 1D 1 - 3D 1 - 2D 1D

Frame rate 5Hz 100Hz 100Hz 100Hz 120Hz

Data Rate 100MB/s 700MB/s ~640MB/s ~600MB/s ~5-6 GB/sec

Status Complete In development Complete Commissioning In development

Table 1: Examples of the more demanding detectors used at the Diamond Light Source indicating the
challenge for the underlying file system.

The above table provides examples of most demanding detectors from the point of view of data

rates and volumes needing to be supported by the file systems at Diamond Light Source.

Additionally there are many other experiments that have modest data rates but can produce very

large numbers of small files and experience has shown that this can also provide very significant

challenges for the supporting file system.

Most large facilities will run experiments that involve the use of these resource intensive detectors in

parallel and it is the challenge to the infrastructure and file systems to support the multiplication in

bulk input and output requirements. Moreover data processing and analysis frequently is done while

data are being taken and being transferred to storage and archive; this results in additional

concurrent read and write operations.

The principal requirement is that on-going experiments should never be compromised by

inadequacies of the file system. This implies that the speed of reading and writing files (both in

terms of throughput and fixed overheads) and the number of I/O operations per second (IOPS) that

the underlying system is capable to perform are of key importance. The detailed properties that are

important to the overall performance of the file system used include:

1
 PCO 4000 and PCO Edge are high speed cameras developed and supplied by PCO AG,Donaupark 11,

93309 Kelheim, Germany
2
 Pilatus 6M is a very high capability detector developed and supplied by DECTRIS Ltd. Neuenhoferstrasse

107, 5400 Baden, Switzerland
3 Excalibur is a detector development collaboration between the Science and Technology Facilities Council

and Diamond Light Source - Journal of Physics: Conference Series Volume 425 Part 6 J Marchal et al 2013 J. Phys.:

Conf. Ser. 425 062003 doi:10.1088/1742-6596/425/6/062003
4
 PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile and Large) is an Ongoing development

project between DESY and RAL / STFC

http://iopscience.iop.org/1742-6596/
http://iopscience.iop.org/1742-6596/425
http://iopscience.iop.org/1742-6596/425
http://dx.doi.org/10.1088/1742-6596/425/6/062003

PaBdataODI-8.5 Deliverable: D8.5

Page 6 of 17

1. File access, creation and removal performance.

2. Directory creation, removal and traversal performance

3. Metadata access time.

From the experiment point of view, the file creation and bare write performance are of prime

importance to secure immediate data storage, in particular since several instruments capture and

compose multi-nodal images in non-persistent memory.

Many of these points were discussed in report D8.2 but since then detectors and experimental

processes have evolved considerably:

 There has been a 4 fold increase in the Pilatus 6M performance and the Excalibur detector is

now in commissioning use.

 The file system must be able to support a number of these enhanced detector systems in

parallel use.

 Some detector systems are in active development that will require very advanced technology to

exploit their capabilities. One example is the use of multiple stacked PCO detectors that

produce data synchronously at full data rate. Even more challenging:

o The developments by Dectris for a single photon counting detector (EIGER) for X-ray

applications. Dectris EIGER5 is composed of a varying number of modules. EIGER 16M

is a 32 module detector with a readout rate of up to 22kHz producing several

(asynchronous) data streams with a data rate of up to 200GByte/s.

o A Pixelated Energy Resolving CMOS Imager – PERCIVAL that is capable of data rates

in excess of 5GB/sec. X-ray CMOS imager for synchrotron and FEL applications.

2.2. Highly parallel detectors and file systems Lustre and GPFS

The PCO Edge, PCO 4000 and many of the available Pilatus detectors including the 100Hz 6M are

now in routine use at Diamond (see report D8.2) with the acquisition and analysis file storage

architecture being illustrated in this report below. The commissioning of the Excalibur detector

provides an interesting opportunity to examine the use of file systems and optimizing their

performance. See section 3.

The current Lustre system in use at Diamond successfully supports the high throughputs required

by such beamlines as Macromolecular Crystallography and Tomography where demands approach

data volumes of greater than 2TB per day and data write speeds of 600MB/s. Newer advanced

experimental techniques coupled with the increasing use of even higher speed detectors such as

the Pilatus 6M running at 100Hz frame rate, PCO Edge and possibly Dectris EIGER in the future,

have caused a review of our current file system technology. At present we are evaluating in both run

and test modes the Lustre (http://www.whamcloud.com/lustre/) and GPFS (http://www-

03.ibm.com/systems/software/gpfs) file systems with the intention of optimizing our future strategy

in this area.

5
For a comprehensive overview see for example:

http://indico.cern.ch/getFile.py/access?contribId=36&resId=1&materialId=slides&confId=48618

http://www.whamcloud.com/lustre/
http://www-03.ibm.com/systems/software/gpfs
http://www-03.ibm.com/systems/software/gpfs
http://indico.cern.ch/getFile.py/access?contribId=36&resId=1&materialId=slides&confId=48618

PaBdataODI-8.5 Deliverable: D8.5

Page 7 of 17

During the same time frame work is being done to commission the Diamond and STFC developed

advanced and highly parallel Excalibur detector. This has presented an opportunity to combine the

two activities.

2.3. Lustre and GPFS test performance comparison, a DLS example

2.3.1. Benchmark criteria

In order to be suitable as data storage area for the new detectors (PCO Edge and new fast Pilatus

6M 100Hz), any new high performance file system must be able to accept data at the maximum rate

of 900MB/s from a single 10GigE connected machine writing to a single file.

The performance requirements are:

1. 900MB/s write throughput for single process to single file over 10GigE

2. 3x 900MB/s write throughput for 3x 10GigE clients

3. 1500 MB/s write throughput for a 2x 10GigE LACP bonded client

4. 15GB/s aggregated throughput for a suitable large number of clients connected over

Ethernet

Functional requirements:

1. provide a POSIX interface to users

2. fully support POSIX draft 1.e style ACLs

3. can be exported via NFSv3

4. can be exported via CIFS/SMB

Notes for 2.3.2 and 2.3.3:

 IOR - http://sourceforge.net/projects/ior-sio/- is the widely accepted tool for comparing the

performance of parallel file systems using POSIX, MPIIO, or HDF5 interfaces

 Link Aggregation Control Protocol (LACP) mentioned below provides a method to control the

bundling of several physical ports together to form a single logical channel. See Chapter 4 in

http://standards.ieee.org/getieee802/download/802.1AX-2008.pdf for more information.

2.3.2. Lustre Test

Using Lustre, writing a 20GB file using IOR over 10GigE or 2x10GigE LACP, the best write

throughput achieved was about 650MB/s, which fails to meet the write throughput requirements

even for a single 10GigE client. Tests with 2 clients have shown that this can be achieved on two

clients in parallel, each writing at about 650MB/s. Writing to multiple files from multiple processes on

a single client allowed writes at network line rate of about 1150MB/s for a single 10GigE link or

about 2300MB/s for a 2x10GigE LACP link. 2 processes writing into one file each were sufficient to

provide more than 900MB/s write throughput.

http://sourceforge.net/projects/ior-sio/-
http://standards.ieee.org/getieee802/download/802.1AX-2008.pdf

PaBdataODI-8.5 Deliverable: D8.5

Page 8 of 17

Tests using Lustre’s network test tool lnet selftest also demonstrated that Lustre can use the full

network bandwidth

2.3.3. GPFS Test

The GPFS version used in this test was GPFS 3.5.0-6 provided as part of the DDN GridScaler

setup. The server nodes have been installed using DDNs GridScaler DVDs and have been

configured by DDN with DLS system administrators closely observing the initial setup but not all

subsequent tuning attempts have been as closely monitored. The GridScaler install is based on Red

Hat Enterprise Linux 6.2.The maximum write performance for a single 10GigE attached client for

GPFS was 1220 MB/s and for a single 2x10GigE LACP attached client 2400MB/s. In the same

configuration writing with two 2x10GigE LACP attached clients achieved up to 4600 MB/s. For

details IOR outputs see section

3. Excalibur Overview

Imaging experiments at X-ray sources like Diamond Light Source require a 2D position sensitive

detector like the Excalibur Detector, a joint development of the Science and Technology Facilities

Council and Diamond Light Source. The primary application of the Excalibur detector will be in

Coherent Diffraction Imaging (CDI) but will also find applications in X-ray Photon-correlation

Spectroscopy (XPCS), full-field microscopy and holo-tomography. Please see Figure 1.

Parameter Medipix3 system Alternative systems (e.g.)

Max. frame rate 1kHz AT 12 bit,

 30kHz at 1bit

Pilatus II < 300Hz, Pilatus XFS >
10kHz

Readout time <1ms per frame, with 12bits per
pixel,continuous with no dead time

 In Pilatus II, the system is dead
during readout.

 Pilatus XFS offers continuous
readout

Pixel Size 55x55 micron Pilatus II: 172 micron

 Pilatus XFS: 75 micron

Dynamic range Single 12 bit, greater by summation of frames. Pilatus XFS is 12bits

Quantum
efficiency

~65% at 15keV 15% at 15keV

Overall parameters of the Excalibur detector.

PaBdataODI-8.5 Deliverable: D8.5

Page 9 of 17

Figure 1 - A schematic representation of the Excalibur detector.

The EXCALIBUR detector consists of three modules, each with 16 MEDIPIX3 chips which can be

read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In

each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-

out chips and provides a continuous active detection region within a module. The detection area of

the 3-module EXCALIBUR detector is 115 mm x 100 mm with a small inactive region between

modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to

allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the

EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain

the very high frame-rate capability. Each computing node is connected separately by a 1Gbit/s link

to a 10Gbit/s switch; the latter leading directly to the storage server

A major function of the computing nodes is to field the data provided by the read-out boards and

write HDF files to the storage facility. The nature of this transfer provides a model to examine the

highly parallel characteristics of the file systems used. For the purposes on this document it was

useful that two file systems Lustre and GPFS were being evaluated for wider deployment.

3.1. Comparison of Lustre and GPFS to support Excalibur

As already stated, Lustre and GPFS are highly complex with many tunable parameters to optimize

their performance for different operational requirements. It is not currently possible to provide a

detailed analysis the configurations with respect to differing requirements due to the limited

practicability of deploying real world testing environments; these tests will depend on the properties

of detectors and, moreover, on the changing physical storage and networks employed at the

scientific facilities.

Notes:

 Report PaNdata D8.2 provides details of the tuning of the GPFS and Lustre file systems and

this report will be restricted to highlighting additional issues emerging during the

commissioning of a highly parallel detector.

Notwithstanding the above, we used the ab initio commissioning of the Excalibur detector to perform

an analysis of the suitability of similarly resourced Lustre and GPFS file systems. The

commissioning rig for the Excalibur detector has been deliberately equipped with equivalent mounts

for Lustre and GPFS. These have been used for evaluating the detector and the performance of the

file systems under similar conditions to those expected under normal operating workload. The

relevant software and version details are noted in the tables of sections 3.2.2 and 3.2.3 below.

PaBdataODI-8.5 Deliverable: D8.5

Page 10 of 17

3.1.1. Write test to the Lustre and GPFS under similar conditions

The file system must be capable of supporting the maximum data rate emerging from the detector

consequently the write to file tests is of key importance. The throughput plot of the file writing plug-

ins under the same conditions

3.1.2. 104Hz, 100000 frames to Lustre

Notes:

A key architectural concept of Lustre is the availability of Object Storage Targets (OSTs) which are

frequently high performance disks, one of the main factors leading to the high performance of Lustre

file systems is the ability to stripe data over multiple OSTs. The stripe count can be set on a file

system, directory, or file level. The stripe size is a configurable parameter and experience has

indicated that that writing to the Lustre03 using a stripe size of 4MB was particularly successful.

The throughput plot of the file writing plug-ins:

Module Config

 configure.py --basic --fix --phdf5 --lustre3

fix No Vertical Gaps = Enabled

phdf5 Lazy Open = No

GPFS Mounted

File path /mnt/lustre03/testdir/tmp/stripe4MB

Ave, Data rate 586 Mb/s ~ Close to the theoretical maximum of
the 6 parallel 1Gb links to a 10Gb/s switch and
then the file system.

Software Operation system of readout cluster nodes – RED
Hat Enterprise Server 6

File System Server Lustre 1.88 (Patched)/Client1.88

PaBdataODI-8.5 Deliverable: D8.5

Page 11 of 17

3.1.3. 104Hz, 10000 frames to GPFS

Notes:

Writing to GPFS appears to be less efficient than Lustre in the case of the Excalibur. One of the

nodes managed the 104Hz, the others all seemed to saturate at a little more than 50Hz. The

queues of the unfavoured nodes all overran and dropped frames.

Module Config

 configure.py --basic --fix --phdf5 --gpfs

fix No Vertical Gaps = Enabled

phdf5 Lazy Open = No

GPFS Mounted

Ave, Data
rate

170 MB/s ~ best so far achieved

Software Operation system of readout cluster nodes – RED
Hat Enterprise Server 6

File System Server and Client GPFS 3.5.0.11

PaBdataODI-8.5 Deliverable: D8.5

Page 12 of 17

3.1.4. Final observations from the Excalibur example

From the outset it is clear that it is necessary to tune the parameters governing the operation of the

file systems to optimize their performance for particular use cases. In addition this optimization

demands careful choice of the hdf5 library write and read parameters to match the characteristics of

the file system used.

Some Notes

Lustre;

 The lustre default block size is 1Mb. Improvements were made by increasing the stripe size to 4

MB using Lustre specific command lfs setstripe and writing 4Mb chunks in hdf5.

GPFS:

 A Z Dimension data chunking is likely to be optimal as GPFS is normally setup to use 4 Mb

blocks by default.

 When configuring the file writer to write a very large number of frames (>100000) the open time

increases and each write operation also takes longer.

o When writing extensible datasets the number of frames should be irrelevant, however,

the HDF file format uses B-Trees for chunk indexing, and when these need to be

extended to an extra level because of a large number of chunks, the overhead can be

significant. HDF 1.10 (scheduled for release in 2014) introduces changes to the file

format so that datasets with one or zero unlimited dimensions are stored without the

need for B-Tree indexing.

 GPFS works very well with smaller datasets (<10000 frames) but with larger datasets its

performance degrades very rapidly.

PaBdataODI-8.5 Deliverable: D8.5

Page 13 of 17

o The underlying reason for this observation is not clear but may be associated with the

detailed configuration of GPFS in this case.

PaBdataODI-8.5 Deliverable: D8.5

Page 14 of 17

4. Practical details of Hierarchical Data Format implementation

The above diagram illustrates the latest architecture used to for high performance data acquisition.

The EPICS area detector provides a standard API for a Data Acquisition Control program.

4.1.1. Notes:

 Parallel writing of HDF5 files is only possible if the writing is done using separate processes and

either to separate files, or using MPI to coordinate writing to one file. It is not possible currently

for separate threads in a process to write simultaneously as the core libraries available from the

HDF5 group (http://www.hdfgroup.org/HDF5/) as in certain circumstances the thread safety of

the core libraries may be compromised. There is an initiative to commission this update but the

cost of this change is currently out of scope for the PaNdata project.

 Mpi i/o based pHDF5 usually won’t go along with compression of the data streams as a

consequence of the HDF5 file layout, so compression or any other image manipulation

algorithm was bound to be single threaded. This problem has meanwhile been successfully

tackled in a collaboration of Dectris, DESY, HDFgroup, NeXuS and PSI (see the Dectris

success stories: https://www.dectris.com/successstories.html) and PaNdata ODI D8.3 for

details.

 HDF5 files are being used for parallel read access with no specific parallel architecture, simply

opening the file read only from several nodes of the cluster. As expected the performance is

improved if we the file is distributed across the parallel file system (e.g., in Lustre, set the

number of OST’s - Object Storage Target - to store the data on to more than 1). This results in

an almost linear improvement to the read speeds.

 In demanding cases the overall data rates and processing speed can depend on optimizing

intermediate resources particularly by using memory caching techniques.

http://www.hdfgroup.org/HDF5/
https://www.dectris.com/successstories.html

PaBdataODI-8.5 Deliverable: D8.5

Page 15 of 17

4.1.2. An illustration of Tomography an Imaging use of the above

infrastructure

 Tomography and Imaging beamlines generally operate simultaneously and can acquire 1-2 TB

per day depending on duty cycle and the availability of sample changers

 Typically PCO 4000 data sets tend to be 30 -> 120Gb where the latter would consist of 4k x 2.5k

x 6k.

 The 6k could be expressed in 6000 separate files but large gains are made by using the

chunking capability of HDF5 to speed up the matrix transposition by defining the chunk layouts

appropriately.

 The file system must allow multiple read access and currently leads to < 30 minutes to

reconstruct using 56 Tesla or 16 Fermi GPUs

5. Conclusions

Simple initial tests indicate that GPFS may significantly outperform Lustre at 10 GbE speeds, but

the reality may depend on the exact problem workload.

There are no definitive recommendations for this report. The results gained from the commissioning

of the Excalibur detector indicate that Lustre may be a more efficient underlying file system in this

case. There are nevertheless arguments based on experience from other facilities that GPFS or

derivatives would be preferable.

Current observations:

 Both Lustre and GPFS require significant tuning to optimize performance for a given workload.

 The overall performance of the application software running on a high performance parallel file

system depends on careful optimization on the applications’ calling of the available support

libraries. Non optimized can negate advantages implemented in the underlying file system.

 There may be considerable benefit to be gained by setting up an open web site to which the

optimal file system configurations for the detectors and associated computing architectures of

different sites can be uploaded.

 Experience so far has shown that good results can be achieved without a thread safe hdf library

but the implementation of the latter would be valuable for future projects.

 It was apparent from the Excalibur development that large HDF5 files provide a challenge to the

underlying file system. Of particular concern, semi random file access and B-tree constraints

can lead extended write delays and unexpected data stream behavior. See Appendix A

 In the case of very demanding data acquisitions using high data rate detectors an appropriate

strategy may be to delegate a NeXus file as the analysis/evaluation application entry. This file

would consist of internal data sections and metadata and use file links to the large data files

being created. These files would be written in the most efficient format possible, a strategy also

being employed by Dectris for the EIGER detector

PaBdataODI-8.5 Deliverable: D8.5

Page 16 of 17

5.1. Software available:

 http://www.h5py.org/ - h5python, a version of python optimized to access HDF5 files and allow

the use of additional tools such as numpy.

 Parallel hdf5 http://www.hdfgroup.org/HDF5/PHDF5/

 http://sourceforge.net/p/cbflib/code-0/349/tree/ - cbflib -> NeXus

 http://www.opengda.org/ - contains a NeXuS data writer

 https://code.google.com/p/pni-libraries/ - a high performance library for directly reading and

writing NeXuS files.

 http://cars9.uchicago.edu/software/epics/areaDetector.html - EPICS area detector - Software to

provide a standard interface to area detectors from the EPICS controls system.

o The detailed control of the detector is delegated to plugins within the EPICS area

detector architecture; the plugins are normally written in C or C++.

 The parallel hdf5writer is currently tailored to EPICS/Diamond requirements,

however this is only superficial. The intention would be to abstract it out and

publish it on our external website.

The main issue is to abstract the TCP protocol from detector system to

phdf5writer.

o Given the plugin code it should be relatively straightforward to integrate into the LIMA

architecture (Lima.blissgarden.org/applications/tango/doc/index.html)

http://www.h5py.org/
http://www.hdfgroup.org/HDF5/PHDF5/
http://sourceforge.net/p/cbflib/code-0/349/tree/
http://www.opengda.org/
https://code.google.com/p/pni-libraries/
http://cars9.uchicago.edu/software/epics/areaDetector.html
http://lima.blissgarden.org/applications/tango/doc/index.html

PaBdataODI-8.5 Deliverable: D8.5

Page 17 of 17

Appendix A – Effects of file indexing

The below graphs show the effect indexing binary search trees during file writing

A graph of 100000 frames at 104Hz (6 nodes, each writing 1MB size frames)

Illustrating the effects of the chunk indexing binary search tree, growing a branch; see the following

1M frames of 1MB per process at 104Hz

