
Page 1 of 13

PaN-data ODI

Deliverable D7.3

D7.3: Mechanisms and tools for integrity of

Datasets.

Grant Agreement Number RI-283556

Project Title PaN-data Open Data Infrastructure

Title of Deliverable Mechanisms and tools for integrity of datasets

Deliverable Number D7.3

Lead Beneficiary STFC

Deliverable
Dissemination Level

Public

Deliverable Nature Report

Contractual Delivery Date 01 January 2014 (Month 21)

Actual Delivery Date 16 Oct 2014

The PaN-data ODI project is partly funded by the European Commission under the 7th Framework

Programme, Information Society Technologies, Research Infrastructures.

Page 2 of 13

Abstract

How to validate integrity of Datasets from the data production to the end user analysis.

Keyword list

Data integrity, corrupted data, silent data corruption, checksum algorithms, sha1, md5, adler32,

bit errors.

Document approval

Approved for submission to EC by all partners on 16.20.2014

Revision history

Issue Author(s) Date Description

1.0 Jean-François Perrin 30th January 2014 Initial release

1.1 Fabien Pinet 28th February 2014 Algorithms evaluation

1.2 Jean-François Perrin 14th October 2014 Production deployment & Integration of feedback

Page 3 of 13

Table of Contents

1 why consider data integrity? ... 4

2 Types of data corruption ... 4

2.1 Technical data corruption ... 4

2.1.1 Storage stack ... 5

2.1.2 Network transfer ... 5

2.2 Intentional corruption ... 6

3 Experimental Data Workflow ... 7

4 Existing solutions .. 7

5 Algorithm evaluation .. 8

5.1 Typical neutron scattering data profile... 8

5.2 Results of the tests .. 8

5.3 Observations ... 9

5.3.1 Small data files – Typical neutron data files ... 10

5.3.2 Medium files ... 10

5.3.3 Largest files ... 11

5.4 Choice of the algorithm. ... 11

6 Production set up at ILL ... 12

7 Conclusion and recommendation .. 12

Page 4 of 13

1 WHY CONSIDER DATA INTEGRITY?

Digital data is essential to modern Science, integrity of such data is vital. Corrupted data could

lead to a vast waste of time and loss of credibility for researchers, it is our role as data producers

and an archive centre, to ensure integrity of the data produced and stored in our research

Infrastructure or at least provide the tools for identifying corrupted data as soon as possible in the

scientific workflow.

When we started this project the first difficulty we encountered was the general feeling that data

integrity is not an issue any more. Maybe you the reader have this impression that data corruption

has disappeared, you may think about fraud or intentional corruption but what about technical or

accidental data corruption?

20 years ago, checksums, algorithms for detecting or even correcting accidental data corruption,

were present in most professional electronic solutions. As an example, at that time, they were

present in the electronic hardware of detector or data acquisition at ILL, today, considering the

low level of errors and the necessity to go fast, the search for millisecond or even nanosecond

improvements, there is a tendency to remove or implement them very partially. This is the same

situation for network devices, file systems … “data volume is too large”, “disks are much more

reliable”, “modern raid systems take care of integrity”.

The situation is not going to improve, with the current economic situation and the volume of data

growing exponentially (i.e. Big Data), we, IT managers, are under very strong budgetary pressure

and therefore are moving from high end, dedicated solution, to low cost solutions where data

integrity protection is almost always not implemented natively.

The following chapters will analyse more deeply the data life cycle, technical problems and try to

recommend solutions.

2 TYPES OF DATA CORRUPTION

2.1 TECHNICAL DATA CORRUPTION

The two causes of technical data corruption are the storage stack and the network transfer, this

includes hardware and software components.

Page 5 of 13

2.1.1 Storage stack

There are different types of data corruption, they have been studied in academic papers12 and

evaluated in a similar scientific environment by our colleagues from CERN IT 3, where during a

test 33700 files were checked (~8.7 TB) and 22 errors found (an error rate of one bad file over

1500 files).

Our intention in this paper is not to thoroughly detail and explain such errors, which could

necessitate a solid technical background in this field, but rather to let the reader know that they

still exist and that some of them are even not detected by ECC and other partial checksum

mechanism.

Those errors come from disk and memory physical errors, RAID systems and software including

firmware errors. Most of them are single bit and silent errors, they are not always noticeable by

end users, but they can lead to files being completely unreadable if for instance a file was

previously compressed.

The most global and simplest approach is to ensure that the file system takes care of data integrity,

currently only few of them really implement a complete data integrity monitoring solution, the

most used in our community being ZFS and WAFL.

As a side note, an industry standard (T10-DIF) on data integrity exists since 20034 and was recently

extended5 (T10-P1) to cover the full storage stack (OS kernel, HBA, FC switchs, disk arrays and

disk drives). They consist in extending the typical block size by some bits for storing the checksum

alongside the data, in order to be verified by the different component of the stack. Such standards

represent a very interesting approach but are currently only implemented by few proprietary

solutions.

2.1.2 Network transfer

Like for the storage stack, data can easily be corrupted during the transfer, again, like ECC for

memories, IP protocol implements a checksum on an individual frame, but errors could occur at a

higher level of the stack where global corruption detection mechanism does not exist or exists only

partially (not catching all possible types of errors).

1 Bairavasundaram et al. “An Analysis of Data Corruption in the Storage Stack.” Proceedings of the 6th USENIX

conference on File and Storage Technologies (FAST'08). February 2008
2 Jiang et al. “Are Disks the Dominant Contributor for Storage Failures?” Proceedings of the 6th USENIX conference

on File and Storage Technologies (FAST'08). February 2008
3 Panzer-Steindel. “Data Integrity.” Internal CERN/IT study. 8 April 2007

(http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=0&resId=1&materialId=paper&confId=13797)
4 Keith Holt (July 1, 2003). "End-to-End Data Protection Justification". T10 Technical Committee document
5 EMC Corporation (September 18, 2012). "An Integrated End-to-End Data Integrity Solution to Protect Against Silent

Data Corruption". White paper. Oracle Corporation.

http://www.t10.org/ftp/t10/document.03/03-224r0.pdf
http://www.oracle.com/us/technologies/linux/data-integrity-solution-1852762.pdf
http://www.oracle.com/us/technologies/linux/data-integrity-solution-1852762.pdf

Page 6 of 13

As a matter of example, data transferred by end users is often achieved using the HTTP protocol.

A standard for data integrity using this protocol exists (RFC 1864 - The Content-MD5 Header

Field) and is implemented in web servers (Apache6) but not in standard clients, i.e. web browsers

(Firefox, Chrome, Internet Explorer, Safari …) and therefore not used. The noticeable exception

is the S3 browser from Amazon, this is probably in response to the data corruption they

experienced in 20087 , where data corruption was generated by faulty load balancers during

transfers.

HTTP is just an example, but the network stack is complex, even if TCP/IP provides a mechanism

for checking and recovering data integrity at the lower level, data crosses billions of lines of code

before reaching a final destination, every bug or misconfiguration (for instance transfer of binary

data in text mode using FTP) in this stack could cause data corruption. This corruption will remain

silent due to lack of mechanisms for ensuring data integrity.

2.2 INTENTIONAL CORRUPTION

Intentional data corruption exists, this is often the cause of retracted scientific publication8 and

even if the rate is low, very simple measures could probably be implemented in order to prevent

such issues.

Analysing public cases of publication retraction where data corruption is concerned, like for

instance in the well-known Schön case9, raw data are simply not available when experts try to

validate results. We were not able to identify a single case in scientific publications where data

corruption is present and where a dishonest scientist has tried to forge digital data integrity in order

to enforce his statements.

Even if the simplest checksum algorithms have been proven to be vulnerable to collisions (a

collision is when two distinct files produce the same checksum result), it will be extremely difficult

to forge meaningful checksums produced by simpler algorithms like CRC32 or Adler, when these

checksums are generated alongside the experimental data and archived by the facility. The person

will have not only to produce meaningful collisions but also bypass the IT security measures of

the facility.

Producing collisions on small words of few characters using CRC or Adler checksum algorithm

families or even the MD5 cryptographic hash algorithm is relatively feasible, exploiting such

weaknesses on larger files, although it has been done in specialised laboratories10, is extremely

difficult for a non-specialist of cryptology.

6 http://httpd.apache.org/docs/2.4/mod/core.html#contentdigest
7 https://forums.aws.amazon.com/thread.jspa?threadID=22709#
8 http://retractionwatch.com/
9 http://en.wikipedia.org/wiki/Sch%C3%B6n_scandal
10 http://web.archive.org/web/20071226014140/http://www.cits.rub.de/MD5Collisions

http://httpd.apache.org/docs/2.4/mod/core.html%23contentdigest
https://forums.aws.amazon.com/thread.jspa?threadID=22709%23
http://retractionwatch.com/
http://en.wikipedia.org/wiki/Sch%C3%B6n_scandal
http://web.archive.org/web/20071226014140/http:/www.cits.rub.de/MD5Collisions

Page 7 of 13

3 EXPERIMENTAL DATA WORKFLOW

Figure 1 Typical data flow taking place in the analytical facilities.

During the production phase, experimental data are produced by the detectors installed on the

instruments. Data are received by instrument control software (1), converted into the target output

format and put temporarily into a local buffer (2) onto the instrument machine, in order to ensure

their initial persistence and avoid introduction of latency due to network storage. Once locally

recorded, the data are archived (3) by being copied in an asynchronous process into the network

data storage, which guarantees its long-term preservation. Finally, the arrival of new files into the

data storage triggers the process of their import into the data catalogues (4), which makes the data

available for internal and external users.

We would like to be able to produce checksums of the raw data at the facility, ideally as soon as

possible in this workflow (Figure 1) but without disturbing the data acquisition process and

eventually integrate this information into the data portal so that users could easily validate that the

files they have transferred have not been corrupted.

4 EXISTING SOLUTIONS

Many algorithms exist in this field, they fall essentially into two categories: simple hashes (Cyclic

Redundancy Check, Adler …) and cryptographic ones (MD5, SHA, Tiger, WHIRLPOOL …). As

it will be presented in the next chapter, the simple hashes present the benefits of performance, but

at the cost of weak protection against collisions and the cryptographic ones are more robust to

collision but slower to compute the hash.

Another aspect which is also important is the availability and popularity of software that

implements these algorithms, the ultimate goal of the project is that users could verify themselves

the integrity of the datasets when they perform analysis. Linux and Mac OS integrate natively a

tool (command line) for computing MD5 or SHA1 hash of files, but not Microsoft Windows.

Nevertheless software are available for the main three analysis platforms (Microsoft Windows,

Page 8 of 13

Linux and Mac OS). Currently MD5 is by far the most popular and very well known, but due to

its weakness the situation might change in the future.

5 ALGORITHM EVALUATION

The goal of this evaluation is to understand the real performance of these algorithms on a modern

but standard computer with typical neutron scattering data.

5.1 TYPICAL NEUTRON SCATTERING DATA PROFILE

Typical experimental neutron scattering data are relatively small (except for nuclear physics

experiments) and store over thousands of small files. Figure 2 presents the distribution by file size

of the 1st 2013 cycle, half of the files are smaller than 94KB.

Figure 2 Distribution of file per size

5.2 RESULTS OF THE TESTS

The tests have been run on a modern (Intel Core I5 – 64bits architecture – 8GB of RAM) but

standard (office type) computer. We tested the algorithms using three different programs:

- jacksum 11 , a well-known, free and platform independent software that supports 58

algorithms.

11 http://www.jonelo.de/java/jacksum/

http://www.jonelo.de/java/jacksum/

Page 9 of 13

- A python script written for the purpose of this test that uses the python native library zlib

for CRC and Adler32 and the python native library hashlib for MD5 and the SHA family

type algorithms.

- A C program which implements only the Adler algorithm. This was done mainly in order

to see if we can improve the performance of it for production purposes.

Tests have been run five times each in order to ensure sufficient consistency of the results. The

computer has been rebooted between tests in order to avoid cache mechanisms effects.

The following table presents the python script results in terms of the time spent (for this exercise

we don’t need information on the CPU usage or I/O waits) for the three most interesting data file

sizes:

- 94 KB represents the median file size of ILL data files

- 80 MB represents the mean size value of ILL data files

- 3.8 GB represents the largest ILL data files.

 94 KB 80 MB 3.8 GB

Read

time

Compute

time
Total

Read

time

Compute

time
Total

Read

time

Compute

time
Total

CRC32 0.000036 0.000088 0.000124 0.428 0.061 0.489 19.06 2.86 21.92

ADLER 0.000036 0.000032 0.000068 0.428 0.025 0.453 19.06 1.17 20.22

MD5 0.000036 0.00015 0.000186 0.428 0.113 0.541 19.06 5.11 24.16

SHA1 0.000036 0.000141 0.000177 0.428 0.100 0.527 19.06 4.69 23.75

SHA256 0.000036 0.000344 0.000380 0.428 0.273 0.701 19.06 12.90 31.96

SHA512 0.000036 0.000227 0.000263 0.427778 0.175 0.603 19.06 8.22 27.28

Table 1Results of algorithms evaluation on typical ILL raw data files - results expressed in seconds

5.3 OBSERVATIONS

In the following presentation of the results we will leave out SHA256 because it is less secure and

less performant than SHA512. The reason for this difference is that the SHA256 algorithm was

created for 32bit operating systems whereas SHA512 came later on and took advantage of the

64bit architecture12. We ran the tests on a 64bit system which is currently the standard.

12 https://community.emc.com/community/edn/rsashare/blog/2010/11/01/sha-2-algorithms-when-sha-512-is-more-

secure-and-faster

https://community.emc.com/community/edn/rsashare/blog/2010/11/01/sha-2-algorithms-when-sha-512-is-more-secure-and-faster
https://community.emc.com/community/edn/rsashare/blog/2010/11/01/sha-2-algorithms-when-sha-512-is-more-secure-and-faster

Page 10 of 13

5.3.1 Small data files – Typical neutron data files

Figure 3 Typical ILL raw data file results

On small files ADLER is the quickest algorithm (68 µs). Most of the time is spent on computing

the hashes. The total processing time is in the order of 100s of µs.

5.3.2 Medium files

Here the time necessary to read the file takes precedence over the time necessary to compute the

hashes.

Page 11 of 13

5.3.3 Largest files

Large files scenario is similar to the medium one, this tendency is highlighted on the Figure 4.

Independently of the algorithm chosen the percentage of computational time over the total time

remains the same for files larger than 80MB.

Figure 4 Percentage of compute time over total time.

5.4 CHOICE OF THE ALGORITHM.

If we were only looking for speed, Adler would have been the best choice, if we were only looking

for security SHA512 would have been the best option. We chose MD5 as a compromise where

security, especially in the context of the archive being managed by the facilities, and performance

Page 12 of 13

are acceptable. The choice was largely driven by the fact that today MD5 is the most well-known

system and shouldn’t represent a barrier for the usage by scientists.

6 PRODUCTION SET UP AT ILL

We wanted to generalise for all of the ILL instruments this integrity control and to introduce the

initial checksum of the generated data file as soon as possible in the workflow described by Figure

1. Unfortunately due to the diversity of detectors on one side and the quest for very high

performance on the acquisition control on the other side, we finally introduced it at step 3 of the

process (i.e. when the files reach the archive server).

Files are transferred from the acquisition control computer to the archive using the rsync protocol.

In this initial deployment, we created a python script which simply monitors the logs of the rsync

server and starts the MD5 checksum as soon as a new file has been transferred. This checksum is

then recorded in a database and added to the manifest file stored in the folder of the data files in

the archive.

The manifest, which is simply a catalogue of key value pairs (name of the file – checksum), is

created mainly for the users who want to validate the integrity of the whole datasets. Tools like

md5sum available on most Linux computers are able to process them automatically. Running

'md5sum -c' compares the MD5 hash value of each file listed in the manifest file with the computed

value of the file hash. If data integrity of the archive has been ensured, all files should be listed in

the output with 'OK'.

The database record is created for two purposes, firstly in order to present hashes on the web

interface of the data portal and secondly for automated regular checks of the archive files. Here is

a small example of the content of the database.

ID FILENAME CHECKSUM_MD5 DATE CYCLE_ID INSTRUMENT_ID PROPOS_ID

285 233895 d41d8cd98f00b204e9800998ecf8427e 01/08/14

10:33:54

133 92 590

286 233896 d41d8cd98f00b204e9800998ecf8427e 01/08/14

10:33:54

133 92 590

287 233897 d41d8cd98f00b204e9800998ecf8427e 01/08/14

10:33:54

133 92 590

This setup will be modified by the end of 2014 in order to introduce an additional check on the

instrument control machine therefore we will move the initial verification from step 3 to step 2 of

the diagram Figure 1.

7 CONCLUSION AND RECOMMENDATION

This work was really useful in order to raise the general awareness of the community regarding

the reliability of the storage and network processes involved in the data production and archiving.

Page 13 of 13

We could only recommend to put in place mechanisms that allow verification of the data integrity

all along the workflow.

A solution does not exist out of the box, but Adler32 is a good candidate for technical checks as

long as security is not a major concern (i.e. ensured by other means). With the increasing volume

of data, this is probably the only real solution for large data producers. On the user side only MD5

or SHA1 are really easily accessible, consequently we need to provide at least either MD5 or SHA1

hashes. For small volumes of data MD5 (or SHA1) is probably the easiest choice, in case of large

volumes a hybrid solution (Adler for the technical checks at the facility premises and MD5 for

user downloads) could suit our use case.

On large files, computing hashes occupies only 10 to 40% of the totally necessary time for

producing the check, the rest is only reading bytes from disk. For research infrastructures

producing such files at a high pace, the solution is probably to try to integrate this hashing process

when files are already in the memory of the systems for other purposes and avoid the read

performance cost.

	1 why consider data integrity?
	2 Types of data corruption
	2.1 Technical data corruption
	2.1.1 Storage stack
	2.1.2 Network transfer

	2.2 Intentional corruption

	3 Experimental Data Workflow
	4 Existing solutions
	5 Algorithm evaluation
	5.1 Typical neutron scattering data profile
	5.2 Results of the tests
	5.3 Observations
	5.3.1 Small data files – Typical neutron data files
	5.3.2 Medium files
	5.3.3 Largest files

	5.4 Choice of the algorithm.

	6 Production set up at ILL
	7 Conclusion and recommendation

