
PaNdata-ODI Deliverable: D4.4

Page 1 of 18

PaNdata-ODI

Deliverable D4.4

Benchmark of performance of the metadata

catalogue

Grant Agreement Number RI-283556

Project Title PaNdata Open Data Infrastructure

Title of Deliverable Benchmark of performance of the metadata catalogue

Deliverable Number D4.4

Lead Beneficiary STFC

Deliverable Dissemination Level Public

Deliverable Nature Report

Contractual Delivery Date 01 Jan 2014 (Month 27)

Actual Delivery Date 13 February 2014

The PaN-data ODI project is partly funded by the European Commission under the 7th Framework

Programme, Information Society Technologies, Research Infrastructures.

PaNdata-ODI Deliverable: D4.4

Page 2 of 18

Abstract

This document presents results related to the performance of the ICAT data catalogue and

discusses their significance. Multiple benchmarking tests have been implemented. These were run

by multiple facilities targeting local and remote ICAT servers. Various issues and performance

factors related to metadata ingestion and querying, have been identified. The analysis of the results

suggests an overall satisfactory performance.

Keyword list

ICAT, data catalogue, benchmarking, metadata, performance

Document approval

Approved for submission to EC by all partners on 13 February 2014.

Revision history

Issue Author(s) Date Description

0.1 Milan Prica, George Kourousias 18 Dec. 2013 First draft version

0.2 Milan Prica, George Kourousias 20 Jan. 2014 iGest ingestion and search results on

Elettra local

0.3 Milan Prica, George Kourousias 6 Feb. 2014 iGest benchmarking from multiple

parties in SV7

0.4 Milan Prica, George

Kourousias, Alistair Mills

7 Feb. 2014 Corrections

1.0 Milan Prica, George Kourousias 12 Feb. 2014 Final version

Acknowledgements: Alistair Mills, Rolf Krahl

PaNdata-ODI Deliverable: D4.4

Page 3 of 18

Table of Contents

Table of Contents .. 3

1. Performance and Benchmarking of Data Cataloguing Services 4

2. Hardware and Software ... 4

3. iGest Benchmarking ... 5

4. Concurrency in Cataloguing ... 7

5. Fast ingestion of multiple DataFiles.. 9

6. Local and Remote Catalogues ... 11

7. Benchmarking in SV .. 11

8. Conclusions: Discussion and Observations .. 15

Appendix: SV6 report... 16

PaNdata-ODI Deliverable: D4.4

Page 4 of 18

1. Performance and Benchmarking of Data Cataloguing
Services

This document is a study on the performance of data cataloguing as is implemented in ICAT. The

performance metrics / benchmarks are of synthetic nature. Such benchmarks make assumptions

about the higher-level mixed processes that inherit the characteristics of the systems in-use. The

systems consist of hardware and software infrastructure. Additional factors like network

performance affect the results. Regarding the software, the benchmarks are based on the code of

iGest (designed in D.4.2 and deployed in D.4.3). This includes different data ingestion and search

scenarios on instances of ICAT v.4.3. The study notes that there are practical limitations on

measuring performance as not all scenarios can be covered. Moreover the ingestion and searching

may have different implementations and deployments so the results may vary. Note that the

examination is mostly for core ICAT systems focused on metadata and their retrieval. Optional

services like the IDS which downloads actual data files have been tested but are beyond the scope

of this document. Nevertheless the design of the tests has been such that the investigation provides

useful indicators that promote the discussion of the broader issues that affect the performance of

cataloguing.

Figure 1. An ICAT server-client architecture involves multiple components with different performance issues

2. Hardware and Software

The underlying layers that a cataloguing system is based on have a significant effect on its

performance. The hardware choice may affect both the Client that ingests (iGest) and the Server

that catalogues (ICAT DB). In facilities like those of the PaNdata consortium, the ingestion is often

part of the acquisition system that is based on a distributed control system (Figure 2). The searching

PaNdata-ODI Deliverable: D4.4

Page 5 of 18

is more often done by an end user terminal (i.e. laptop). As expected, there are plenty of different

cases but the hardware in the CPU, the memory and the network infrastructure should be

considered of high importance. Multiple setups both for clients and servers have been tested.

Figure 2. Facility ICAT with clients of different roles

The software in the D4.4 case is the latest ICAT to date (v.4.3.2) deployed in Linux and tested by

iGest scripts on Linux clients as well. iGest is in Python 2.7 while ICAT's DB is Oracle. A critical

component is the ICAT API as exposed in WSDL. The measurements are performed by custom

scripts based on iGest, enhanced with various timing functions. Suitable Python Decorators1 store

the results for later interpretation to a file. The measurement overhead is minimal. Standard Python

profiling (cProfile) has been performed but the information is of limited use due to the external

Suds/WSDL calls.

3. iGest Benchmarking

The benchmarking tests are based on the code iGest2. iGest follows the design of an ingestor as

described in D4.2 and implemented in D4.3. Other approaches to ingestion exist (i.e. Python-Icat3)

and optimised implementations are possible if developed for custom cataloguing scenarios.

Nevertheless, the modest size and its reference implementation, render it a suitable code base for

prototyping and testing. While the original iGest generates sample Virtual Lab NeXus files, the

benchmark scripts4 exclude their generation so that the local I/O is part of the measurement. In

addition there is also an adapted version of the iGest benchmark that uses the Python-Icat module

1
 https://wiki.python.org/moin/PythonDecorators

2
 http://pandata.org/igest/

3
 https://code.google.com/p/icatproject/wiki/PythonIcat

4
 https://code.google.com/p/pandata/source/browse/#svn/trunk/ops/sv7/client/test_igest

https://wiki.python.org/moin/PythonDecorators
http://pandata.org/igest/
https://code.google.com/p/icatproject/wiki/PythonIcat
https://code.google.com/p/pandata/source/browse/#svn/trunk/ops/sv7/client/test_igest

PaNdata-ODI Deliverable: D4.4

Page 6 of 18

rather than direct Suds5. For completeness purposes, the time required to generate a Virtual Lab

NeXus file with the required metadata but without actual data is approximately 15ms. An early

observation was the overhead during ingestion caused by querying the catalogue whether the item

to be ingested already exists (e.g. Facility, Instrument). This has been rather obvious in

tests where complete ingestion cycles are performed (Facility,...,Datafile). For simplicity

the test excludes setting of authorisation Rules.

Figure 3. 500 ingestion cycles in local ICAT: timing, CPU and Network
6

5
 https://code.google.com/p/pandata/source/browse/#svn/trunk/ops/sv7/client/test_igest-python-icat

6
The labels on the axis are as follows. CPU History vertical axis labels: 0%, 20%, 40%, 60%, 80%, 100%. Network

History vertical axis labels: 0 Mbps,0.2 Mbps, 0.4 Mbps, 0.6 Mbps, 0.8 Mbps, 1 Mbps. Horizontal axis is divided

into 60s sections.

https://code.google.com/p/pandata/source/browse/#svn/trunk/ops/sv7/client/test_igest-python-icat

PaNdata-ODI Deliverable: D4.4

Page 7 of 18

Figure 3 shows a single iGest client performing 500 full ingestion cycles

(Facility,...,Datafile) into a local (same network) ICAT. The network graph (blue line:

receiving, red line: sending) shows that even in the case of ingestion the client receives more data

than it sends. The CPU graph demonstrates the utilisation of a single core of the test computer7.

4. Concurrency in Cataloguing

The results of this study suggest that both ingestion and searching can substantially benefit from

parallelism using concurrent execution. The previous deliverable (D4.3) has already hinted that

cross-facility searching when performed in parallel returns the results more quickly. A simple

configuration where the list of facilities actually contains the same facility yields a substantially

higher number of queries per second. The benchmarking test is extended to examine ingestion as

well and when executed currently it has a near linear increase in performance. Note that above a

certain number of concurrent operations, the Glassfish server used by ICAT reaches its limit and

further performance improvements are not possible, although optimization may overcome this issue.

7
 Intel i7-3820 @ 3.60GHz with 24GB RAM (Ubuntu 12.04)

PaNdata-ODI Deliverable: D4.4

Page 8 of 18

Figure 4. Performance for parallel full ingestion clients (1, 2, 4, 8, 16, 32). CPU and Network for 1,2,4,8,16.
8

The first test was for the type of concurrency where multiple complete cycles of ingestion

(Facility,...,Datafile) were performed. As shown in Figure 4 the parallel approach scales

successfully with the number of processes (red line). The CPU and Network graphs (note they are

only till 16 clients) show multicore use and the expected increase in dataflow. Nevertheless for the

16 concurrent ones, both CPU and Network show an extended period suggesting declining in

performance. At the same time the server9 saturated its CPUs at 32 clients. Each process

performed 100 full ingestions (Facility,...,Datafile).

8
 The labels on the axis are as follows. CPU History vertical axis labels: 0%, 20%, 40%, 60%, 80%, 100%. Network

History vertical axis labels: 0 Mbps, 2 Mbps, 4 Mbps, 6 Mbps, 8 Mbps, 10 Mbps. Horizontal axis is divided into 20s

sections.

9
 3 Core VM (Intel Xeon E5-2670@2.60GHz) CentOS 6.2

PaNdata-ODI Deliverable: D4.4

Page 9 of 18

Concurrent ingestion may not only be used for enhanced performance but reflects the realistic

scenario where multiple instruments ingest data at the same time in the facility catalogue (Figure 2).

In a similar manner, multiple users can search the catalogue for data. A suitable test has been

performed (Figure 5).

Figure 5. Performance for parallel search clients (1, 2, 4, 8, 16, 32) including CPU and Network
10

.

The parallel searching clearly demonstrated that above 16 concurrent searches, the performance

decreases. This is of course for the specific setup of the tested systems. Note that each single

process performed 200 sequential searches.

5. Fast ingestion of multiple DataFiles

The complete cycle ingestion demonstrates the overall process but this section also examines the

performance of a more realistic ingestion processes where an ICAT element (e.g. Datafile) is

10

 The labels on the axis are as follows. CPU History vertical axis labels: 0%, 20%, 40%, 60%, 80%, 100%. Network

History vertical axis labels: 0 Mbps, 2 Mbps, 4 Mbps, 6 Mbps, 8 Mbps, 10 Mbps. Horizontal axis is divided into 40s

sections.

PaNdata-ODI Deliverable: D4.4

Page 10 of 18

ingested assuming that its required parent elements (e.g. Facility,...,Dataset) already exist.

This naturally is much faster and represents the case where a fast acquisition system catalogues

Datafiles on an already existing Facility to Dataset hierarchy (Figure 6). In this case, the

Datafile ingestion is 8.5 times faster (Figure 3) compared to the complete cycle (even when the

Facility,…,Dataset exist there is still a cost for querying their presence). On the Network graph

of Figure 6 there is Inbound traffic (receive) peak that reflects a single query which returns the 2000

Datafile identifiers.

Figure 6. Burst ingestion of Datafiles assuming uniqueness and existing parent elements, followed by a single

query that returns all of them
11

.

11

 The labels on the axis are as follows. CPU History vertical axis labels: 0%, 20%, 40%, 60%, 80%, 100%. Network

History vertical axis labels: 0 Mbps, 0.5 Mbps, 1 Mbps, 1.5 Mbps, 2 Mbps, 2.5 Mbps. Horizontal axis is divided into

30s sections.

PaNdata-ODI Deliverable: D4.4

Page 11 of 18

6. Local and Remote Catalogues

The characteristics of the Network and its performance have an impact on ICAT. High bandwidth

may be required for parallel processes while faster transmission to reception (round-trip time) with

low packet-loss, affects high frequency burst ingestion operations. The Network charts of Figure 4

and Figure 5 reflect the volume increase of ingestions and searching. The following section on

benchmarking from different facilities clearly shows that when the client is operating on a local ICAT

endpoint (e.g. Elettra ingesting in icat-elettra.grid.elettra.trieste.it), it is much faster than when it is

connected to a remote one (Figure 9).

7. Benchmarking in SV

A benchmark has been developed and included the scheduled Service Verification 7. It is based on

iGest and performs metadata ingestion and catalogue searching. Since it is executed by multiple

partners/facilities, it reflects the performance variations due to different hardware, software and

network.

The tests were performed from the following nine PaNdata facilities:

ALBA, ELETTRA, DLS, ILL, ISIS, HZB, PSI, SOLEIL, STFC.

There were two flavours of the iGest benchmark: the main one was based on Python-Suds and the

other on Python-Icat.

There were five different ICAT instances used:

 icat-elettra.grid.elettra.trieste.it

 tng-5.default.stfc.uk0.bigv.io

 icat.helmholtz-berlin.de

 www.pandata.org

 wwws.esrf.fr

Not every facility/client performed the tests against all targets and not everyone used both the Suds

and the Python-Icat versions.

The benchmark includes four tests:

1. multiple complete ingestion cycles

2. multiple queries that return single results

3. single ingestion of multiple Datafiles in burst

PaNdata-ODI Deliverable: D4.4

Page 12 of 18

4. single query that returns multiple results

This test also reported on additional information including host OS and network transmission to

reception (round-trip time) from Client to ICAT endpoint. The pinging often failed due to firewall

restrictions.

Figure 7. iGest benchmark (Suds/Python-Icat) from multiple facilities targeting the TNG-5 sever

The data illustrated in Figure 7 were collected on a test pointing at an ICAT deployed on the BigV

cloud hosted in the United Kingdom. STFC ran the Suds client from a host on the same cloud while

ISIS ran both clients from a different network in UK. The physical proximity may be an explanation

PaNdata-ODI Deliverable: D4.4

Page 13 of 18

of their performance. A similar case is in Figure 9 where both ESRF and ILL perform equivalently

well on the ICAT of ESRF.

Figure 8. iGest Suds and Python-Icat test for mean value and standard deviation for 20 cycles in TNG-5

The data of Figure 7 and Figure 8 hint on the performance (and its stability) of different ingestion

implementations. Each has its merit and both perform well.

On Figure 9 the charts show ICAT servers hosted by partner facilities. The local clients (i.e. Elettra

 icat-elettra.grid.elettra.trieste.it) show a significant performance advantage

over the remote ones.

PaNdata-ODI Deliverable: D4.4

Page 14 of 18

Figure 9. iGest benchmarks for ELETTRA, HZB, ESRF hosted ICATs

PaNdata-ODI Deliverable: D4.4

Page 15 of 18

8. Conclusions: Discussion and Observations

For large and complex systems like data catalogues, measuring their performance is a substantial

task. A data catalogue such as the examined ICAT relies on multiple software and hardware

subsystems all of which may have different performance characteristics and requirements. As

expected, for most of the networked based deployments the actual network itself is an important

determinant of performance. Moreover, ICAT has multiple modalities of use, for instance ingestion

of metadata and searching functions. Each of them may have different performance characteristic

and factors that affect them. In D4.3, ICAT has been approached as an “ecosystem” to describe

loosely that a data catalogue includes elements beyond the expected database and the core APIs.

Such elements are user-front ends (e.g. TopCat, ICE), web portals, integration to existing

applications (e.g. DAWN, MANTID), and additional services like data converters and data access

systems (e.g. IDS). ICAT deployments may differ in terms of provided services as each PaNdata

partner may have different requirements. The study excluded benchmarking add-on components

like TopCat, ICE and IDS, and authentication mechanisms like Umbrella, as these are optional and

beyond the scope of general evaluation of the core ICAT. Nevertheless for specific deployments it is

recommended to examine those as well. The benchmark was based on iGest, a reference non-

optimised implementation suitable for prototyping and studying ingestion and searching. The nature

of the test is synthetic (e.g. complete ingestion cycles) rather than focused on isolated components

(e.g. Oracle DB). Custom solutions may yield better results but also caveats. An example has been

the attempt to ingest by bypassing the ICAT API/WDSL and to operate directly in DB (SQL) level.

The performance has been much better; nevertheless this can easily result in incoherence and

eventually an incorrect data catalogue. Due to the importance of the data that the PaNdata facilities

produce, it is not recommended to perform ingestions this way in spite of the performance

advantage. This study examined the latest ICAT 4.3.2 but older versions are still in production.

The principal conclusion is that ICAT is a well performing cataloguing system. Both ingestion and

searching are fast enough for purpose. ICAT can scale well thus it can satisfy the needs of a range

of facilities, from small to very large. As ICAT is based on a stack of software and hardware

components, it can benefit from fine tuning (e.g. network and Oracle DB). It should be mentioned

that high frequency instruments like the Free Electron Laser (FEL) FERMI @ELETTRA (data rates

of 50Hz), require special approaches to data cataloguing as its requirements are not met by the

above-mentioned benchmarking statistics. The positive verdict on the performance of ICAT is

supported by this set of tests, the long term use of ICAT at the facilities, and a series of Service

Verifications which were part of the PaNdata-ODI project.

PaNdata-ODI Deliverable: D4.4

Page 16 of 18

Appendix: SV6 report

WP4 has been reporting on the progress and results of the Service Verification actions. D4.2 and 4.3 have included such

SV reports (0-5) relevant to their Description of Work. The present Deliverable had tests performed as part of latest SV7
12

.

All the relevant results (benchmarking) are presented in this document. For continuity/completeness purposes and for the

benefit of PaNdata partners using the ICAT system, this Appendix includes the previous SV6 report. It does not contain

information relevant to the task of D4.4.

Service verification 6 started on November 1st, 2013 and completed by mid-November.

Of particular note in this service verification were the ICAT services of ISIS and DLS; this is the first time these production

quality services have been part of a service verification. A number of services appeared for the first time in this SV:

 Verification of provenance data in ICAT..

 Inclusion of a Fuseki service test.

 Deployment of Nexus support on client nodes. This performed well where Nexus was deployed correctly. Some

partners had difficulty in deploying the software.

This service verification included a further, successful test of the European Affiliation Database.

The collection of ICATs is now quite diverse, with the ICATs being a mixture of ICAT 4.2 and ICAT 4.3, a mixture of

Glassfish 3 and Glassfish 4, a mixture of databases such as Oracle, MySQL and Derby. The results of the tests were not

affected by this diversity. The three factors which prevented 100% success were a firewall setting, self-signed certificates

and the use of non-standard ports for services.

A comparison with previous SV shows that the project is making progress with higher participation, higher success rates,

more services, and higher value of the services.

There were six parts to the test, and ten of the twelve partners provided a response: Alba – Spain; DESY – Germany; DLS

– UK; Elettra – Italy; ESRF – France; HZB – Germany; ISIS – UK; PSI – Switzerland; Soleil – France; STFC – UK.

Eight of the twelve partners provided an ICAT service: DLS – UK; Elettra – Italy; ESRF – France; HZB – Germany; ISIS –

UK; PSI – Switzerland; Soleil – France; STFC – UK.

STFC provided the Fuseki server, and the provenance records in an ICAT.

ESRF provide the European Affiliation Database.

The participation of the partners in the client tests is shown in the Figure A.

12

 The SV7 results regarding additional services, will appear on:

http://pandatawp4.wordpress.com/service-verifications/report7/

http://pandatawp4.wordpress.com/service-verifications/report7/

PaNdata-ODI Deliverable: D4.4

Page 17 of 18

Figure A: SV6 Participation

SV Results

Parts 1 and 2 – Run a client script which collects information from the ICAT services. The results are summarized in the

Figure B.

Figure B: SV7 Summary

Part 3 – Run a script which locates information in the European Affiliation Database.

The partners all reported success with this test. The team at ESRF did a very good job of preparing the test.

PaNdata-ODI Deliverable: D4.4

Page 18 of 18

Part 4 – Run a script which retrieves information from the Fuseki server and from a Nexus file.

All of the partners were successful in retrieving information from the Fuseki server. Some of the partners were successful

in retrieving information from a Nexus files, as they had difficulty installing the Nexus client software.

Part 5 – Run a client script which collects information from ISIS.

All of the partners were successful.

Part 6 – Run a client script which collects information from the DLS.

The partners within the firewall at Rutherford Appleton Laboratory were successful with this test. The firewall prevented

access for the others.

Development of the Pandata service

Figure C summarises the added value of the ICAT service provided by the partners.

Figure C: Added value

SV6 Conclusions

This service verification was successful and it was well supported by the partners.

The highlights include:

1. Production catalogs are now available;

2. Most of the partners can access data on the ICATs;

3. Some of the partners have successfully installed Nexus client software;

4. Most of the partners can access the Fuseki server;

5. All of the partners can access data in the European Affiliation Database;

6. The plan to provide a collection of good quality ICAT services is making good progress.

