

Towards an open data infrastructure for photon and neutron facilities

Brian Matthews and Juan Bicarregui

Scientific Computing Department (SCD)

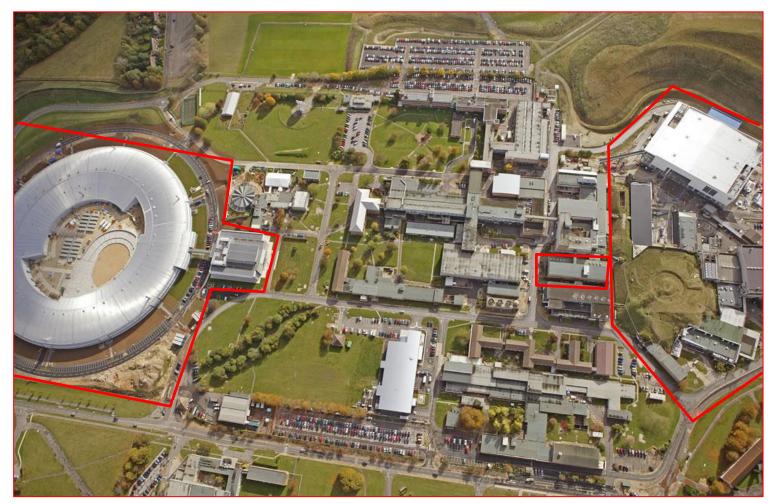
Rutherford Appleton Laboratory (RAL)
Science and Technology Facilities Council (STFC), U. K.

Science and Technology Facilities
Council

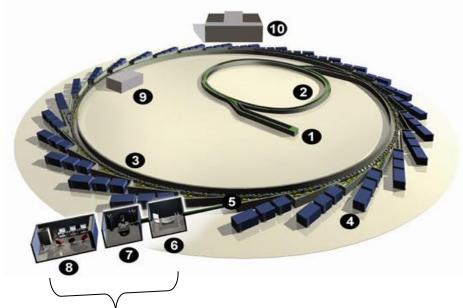
- Provide large-scale scientific facilities for UK Science
 - particularly in physics and astronomy
 - ISIS and Diamond Light Source facilities
- Scientific Computing Department
 - Provides advanced IT development and services to the STFC Science Programme
 - Strong role in management of our science data

The computing centre at Rutherford Appleton Laboratory

The computing centre at RAL houses 20,000 computer processors and stores 10,000,000,000 Mbytes of data available on-line.



The centre is used for simulation and data analysis by researchers in all scientific disciplines from throughout the UK and their international collaborators.


STFC Rutherford Appleton Laboratory

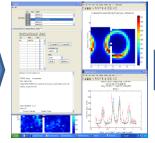
Doing Science at Source Facilities

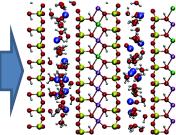
Neutrons and photons

Provide complementary views of matter:

Photons "see" electric charge – high atomic number nuclei

Neutrons "see" nucleons – especially hydrogen atoms

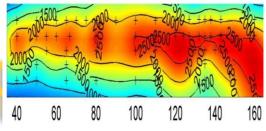

Visit facility on research campus


Place sample in beam

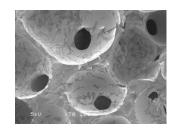
Diffraction pattern from sample

Fitting experimental data to model

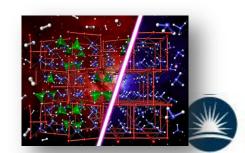
Structure of cholesterol in crude oil

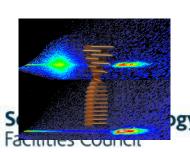


Facilities Science


- ~30,000 user visitors each year in Europe:
 - physics, chemistry, biology, medicine,
 - energy, environmental, materials, culture
 - pharmaceuticals, petrochemicals, microelectronics
- Big Facilities for Small Science

- Billions of € of investment
 - c. £400M for DLS
 - + running costs
- Over 5.000 high impact publications per year in Europe
- Each facility has dedicated data and computing infrastructure
 - But so far no integrated data repositories across facilities
 - Lacking sustainability & traceability


Longitudinal strain in aircraft wing


Bioactive glass for bone growth

Hydrogen storage for zero emission vehicles

Magnetic moments in electronic storage

A Common Community

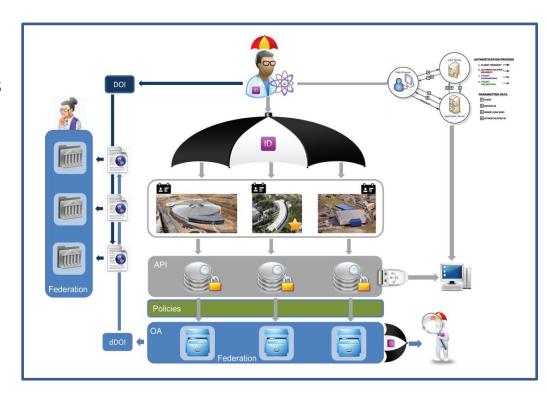
	Number of Users shared between facilities																
	BER II B	ESSY II	DESY	DLS	ELETTRA	ESRF	ILL	ISIS	LLB	SINQ	SLS	SOLEIL	FRM-II	ANKA	neutron	photon	all
BER II	850	80	68	25	18	128	261	141	67	76	12	14	111	5	375	5 244	850
BESSY II	80	2306	238	45	134	399	67	33	31	26	149	93	42	31	175	758	2306
DESY	68	238	3563	88	121	735	194	91	55	44	155	130	103	43	356	1105	3563
DLS	25	45	88	3494	72	739	213	336	35	18	145	149	20	12	441	1 967	3494
ELETTRA	18	134	121	72	2731	455	85	43	23	4	66	316	9	20	145	5 839	2731
ESRF	128	399	735	739	455	10728	886	406	235	92	600	1069	144	80	1303	3256	10728
ILL	261	67	194	213	85	886	4338	741	343	229	69	176	349	10	1450) 1246	4338
ISIS	141	33	91	336	43	406	741	2755	120	119	43	52	155	5	908	3 716	2755
LLB	67	31	55	35	23	235	343	120	1348	34	12	131	92	3	425	359	1348
SINQ	76	26	44	18	4	92	229	119	34	726	96	9	97	0	334	1 210	726
SLS	12	149	155	145	66	600	69	43	12	96	2424	182	18	18	169	923	2424
SOLEIL	14	93	130	149	316	1069	176	52	131	9	182	3656	14	26	299	9 1460	3656
FRM-II	111	42	103	20	9	144	349	155	92	97	18	14	1087	5	494	1 255	1087
ANKA	5	31	43	12	20	80	10	5	3	0	18	26	5	452	19	9 144	452
neutron	850	175	356	44	1 145	1303	4338	2755	1348	726	169	299	1087	19	7117	2350	8852
photon	244	2306	3563	349	4 2731	10728	1246	716	359	210	2424	3656	255	452	4517	19902	24154
all	850	2306	3563	349	4 2731	10728	4338	2755	1348	726	2424	3656	1087	452	8624	19242	30873

Details of how we count users: http://wiki.pan-data.eu/CountingUsers

PaN-Data facilities users

Total number of unique users:	30873						
Using only Neutrons:	6719	or 21.7% of all unique users					
Using only Photons:	22021	or 71.3% of all unique users					
Using Neutrons and Photons:	2133	or 6.9% of all unique users					
Using more than one facility:	6863	or 22.2% of all users					
Using more than one Photon source:	4252	or 17.6% of all photon users					
Using more than one Neutron source:	1734	or 19.6% of all neutron users					
All facilities have users in common with all other facilities, also across neutron and							
photon sources.							
Typically, 30-40% of the users of any of the photon or any of the neutron sources also use at least one other facility							

Benefit to be gained to the user community by coordinating the computing infrastructure

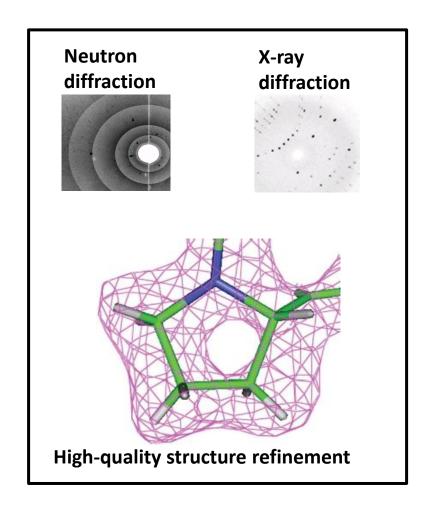


PaN-data ODI – an Open Data Infrastructure for European Photon and Neutron laboratories

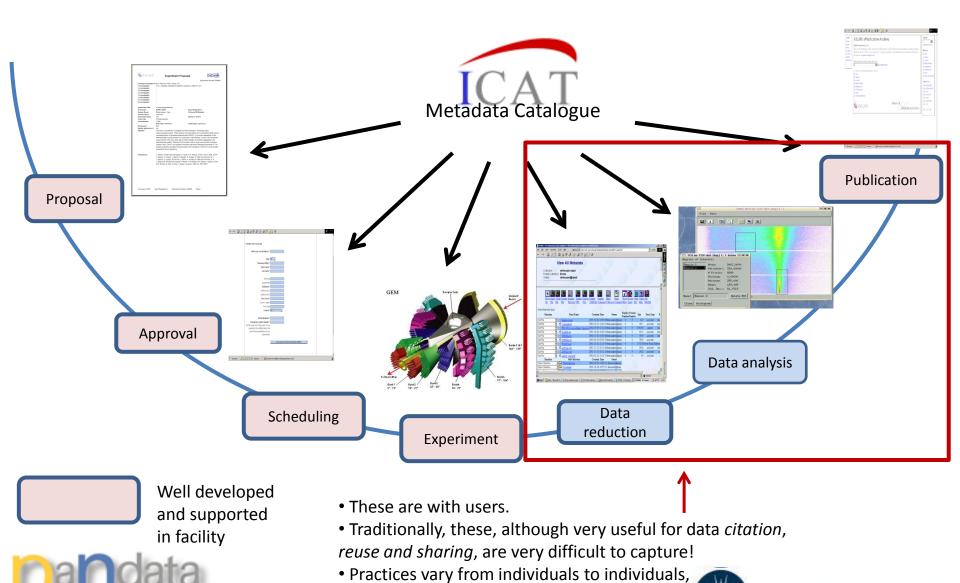
Federated data catalogues supporting cross-facility, cross-discipline interaction at the scale of atoms and molecules

Provide common tools and user experience across facilities

- Unification of data management policies
- Shared protocols for exchange of user information
- Common scientific data formats
- Interoperation of data analysis software
- Data Provenance: Linking Data and Publications
- Digital Preservation: supporting the long-term preservation of the research outputs



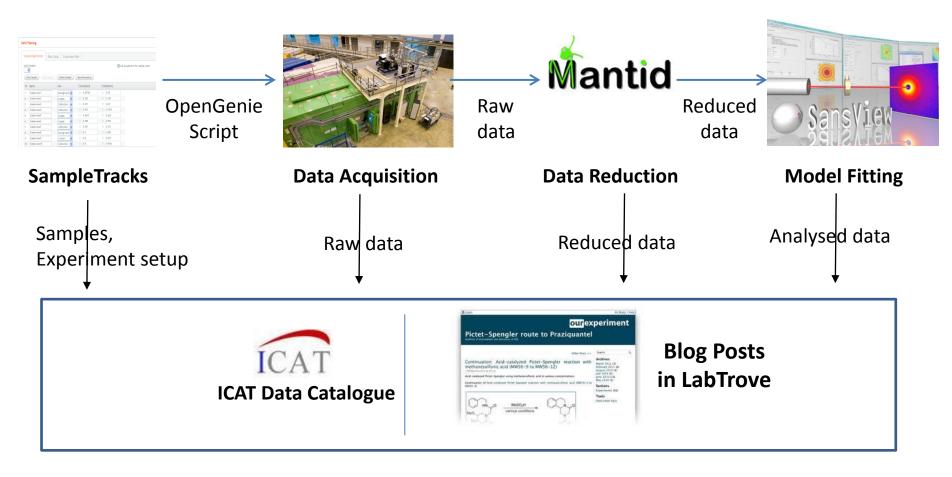
Sharing and combining data


- Users move around to collect different views on their samples
 - Different instruments have different characteristics
- Combining data can give additional insights
- Needs
 - Common data formats
 - Common data access
 - Common metadata
- Context
 - Providing better provenance information

Data Continuum

and from institutions to institutions

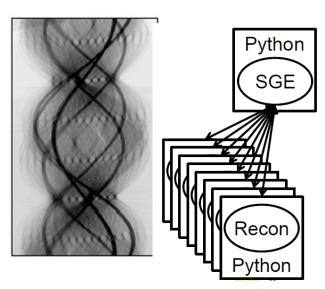
Science & Technology Facilities Council

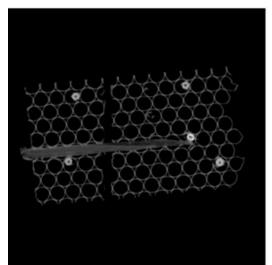

Managing the Data Continuum

- Provide better support for the data continuum
 - Recording of provenance
 - Linking raw and derived data, publications and software to the experiment
- Improve service to the user
 - Accurate record keeping of science results and context
 - Validation of science results
 - Publishing and reuse of "research objects"
 - Linking to other research objects
- However, capturing provenance of analysed data is hard and expensive
 - Lots of variation and input from users
 - Lots of blind alleys and retracing of steps
 - Mostly undertaken in the user's institution
- So why bother?
 - Good use cases where managing provenance well gives benefits.

Smart Research Framework: Automated Data Processing Pipeline for ISIS

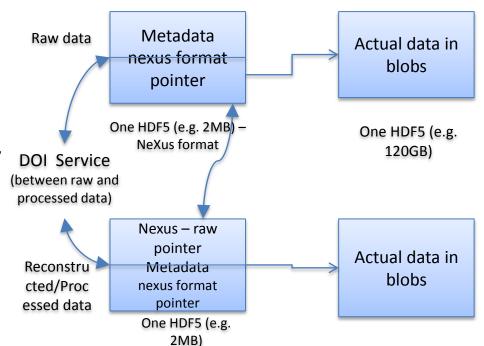
What does this mean?


- We can automate the stages of the process "around the experiment"
 - Setting up the experiment
 - Auto-generating configuration and control scripts
 - Initial reduction of the data
- Capture and link (in ICAT)
 - Sample information
 - Experiment configuration and Control
 - Raw and reduced data,
 - Reduction software
- Auto-publish in the Blog the record (with links)
 - Accurate record of metadata for the user to refer to
 - Can be shared with research group or more widely
 - Auto-data publication.
- Would expect to be able to transfer this to "Express Services"
 - A complete data package for the user.

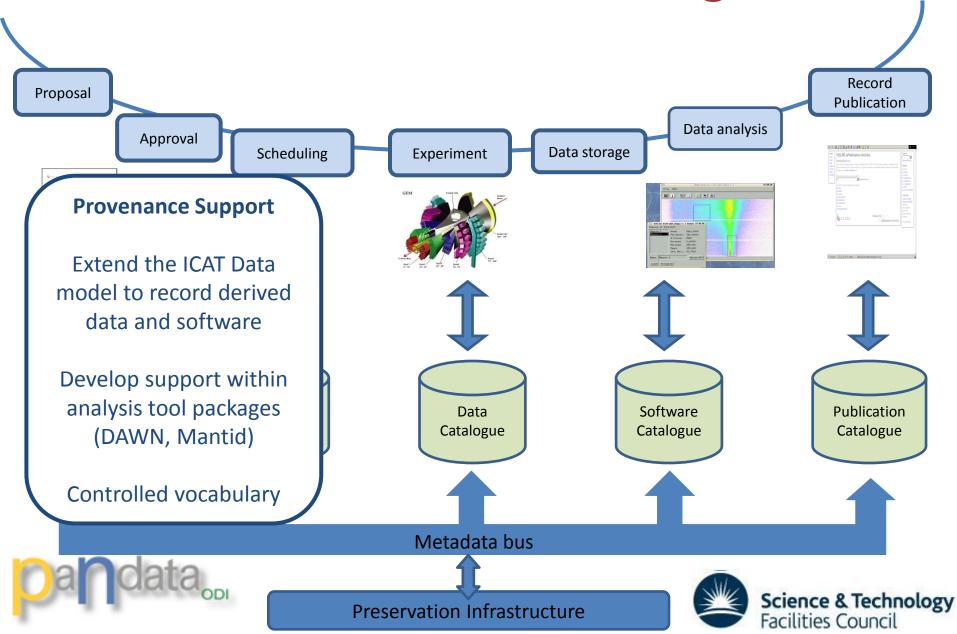


Tomography - Reconstruction

- I13: high throughput tomography beamline
- Computationally heavy process
 - Up to 120 GBs/file every 30 minutes
 - 6,000 TIFF images/file
 - Up to 200 GBs/hr
 - ~5 TBs/day
 - 1-3 days/experiment
- Each reconstruction
 - 15 individual runs on a GPU
 - Can take up to 45 mins



Links between metadata and files


- It is not cost effective to transfer data to the home institutions
 - The network bandwidth
 - take data back home on storage drive
- It is expensive to do analysis at home institutions
 - It is impossible to process user's own computer
 - Lack of hardware resources
 - Lack of metadata
 - Lack of expertise (e.g. parallel processing, GPU programming)
- Users are interested in remote data analysis services
 - "... Of course this would mean a step change in the facilities provided and the time users spend at the facility. ..."
 - Capture Provenance of data products

PaN-data shared catalogues

Conclusions

- Developing a programme towards a common data infrastructure for facilities
 - Pooling limited resources
 - Common experience for users
 - Can transfer and share data more effectively
- Developing a common approach
 - Data and software catalogues
 - Provenance to capture the full context of the experiment
- Big facilities for small science

brian.matthews@stfc.ac.uk

Science & Technology
Facilities Council